问
RMIT打造光驱动类脑芯片!用超级材料黑磷充当AI的视觉神经元股友LrBwI
RMIT打造光驱动类脑芯片!用超级材料黑磷充当AI的“视觉神经元”股友LrBwI73分钟前RMIT打造光驱动类脑芯片!用超级材料黑磷充当AI的“视觉神经元”子佩 芯东西 昨天如何让机器睁眼“看见”世界?RMIT发集成多项功能的AI芯片,光“雕”是亮点!编译 | 子佩编辑 | 心缘芯东西11月19日消息,视觉记忆是人类认知学习的核心,但对于人工智能来说,电磁频谱(可见或不可见)才是它的“眼”。
人工智能系统,要将各个频段的电磁频谱转化成自己的视觉记忆,依靠的就是基于内置内存和信号处理的成像单元,但目前并没有一个电信号平台,可以根据光的变化改变电信号极性,从而赋予AI视觉记忆。
近期,由皇家墨尔本理工大学(Royal Melbourne Institute of Technology University,下称RMIT)领导的研究团队,提出了一项AI技术,将成像、图像处理、机器学习和内存集成在单个光驱动芯片中。
该芯片旨在通过模仿人脑处理视觉信息的方式,为机器人、智能穿戴设备和如人造视网膜等仿生植入物提供更为灵敏、智能的“视力”。
11月17日,该篇论文《基于层状黑磷的完全光驱内存和神经形态计算(Fully Light‐Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus)》发表在《advance materials》上。
01.小身材却有大功能,串起散落的AI组件通常来说,人工智能严重依赖从数据采集到算法模型的一整套技术逻辑,但在硬件中,受限于技术或者空间,这些逻辑链条中的“块”可能“散落”在不同的区域。
RMIT研究团队的目标就是将这些散落的“逻辑块”串起来,通过将多个组件和功能集成到一块芯片中,从根本上提高AI决策的效率和准确性。
成像、处理、机器学习和内存集成在一块的光驱动芯片。
而这个“串起来”的思路就是来自自然界中最聪明的计算机——人脑。
负责研究团队中功能材料和微系统、RMIT副教授Sumeet Walia说,“我们的目标就是以视觉为抓手,让计算机复刻人脑从视觉识别到判断决策的全过程,从而在神经机器人学、人机交互技术和可扩展的仿生系统上有进一步的突破。
”在谈及应用层面时,Walia提到了行车记录仪。
如果行车记录仪里装上了神经启发式的硬件,无需连网,它就可以识别灯光、标志、物体并做出即时决策。
02.被“光”雕刻的芯片:层状黑磷的妙用如果掀开这块AI芯片“视力惊人”的神秘幕布,那我们就能看到其背后的超薄材料——二维层状黑磷。
二维层状黑磷的神奇之处就在于,它可以基于不同波长的光来改变自身的阻值,从而充当AI的“视觉神经元”。
RMIT研究团队表示,采用黑磷的启发来自于光遗传学。
作为生物技术中的新兴工具,光遗传学使科学家以高精度深入研究人体中的电流,并通过光来观察神经元的变化。
基于层状黑磷和光遗传学,RMIT团队通过向芯片照射不同波长的光,来实现成像、存储等不同的功能,并创建、修改AI芯片的内存。
通过改变和编码光的波长,AI芯片现在可以自动捕获并增强图像,进行像素内图像预处理,并基于全光学驱动的神经形态计算,对图像进行分类。
实验表明在经过训练后,该芯片图像识别准确率超过90%。
除了能够“串联”组件的优势,该黑磷AI芯片还能与现有的电子技术和硅技术兼容,方便将来能再轻松“串”进其他技术。
Sumeet Walia副教授和Taimur Ahmed博士该项研究团队的另一主要负责人Taimur Ahmed博士说,“光驱动计算比现有技术更快,更准确且能耗更低。
而且当我们把如此多的核心功能整合到一个纳米级设备上,单个芯片上就能进行更大量的机器学习和AI集成应用。
”03.结语:多领域应用,AI芯片的类脑“梦”RMIT研究团队表示,除了行车记录仪、机器人等硬件,光学AI芯片还在康复届也潜力无限,例如,如果将该AI芯片装进人工视网膜,科学家就可以提高仿生眼的准确性,加快仿生眼的商业化。
也正如Ahmed博士所言,AI芯片的终点是永恒不变的:成为一个可以和人脑一样从环境中学习的AI大脑。
来源:ScienceDaily笔记广场分享至:微信朋友圈微博声明:本文来自自媒体,不代表的观点和立场。
据此操作,风险自担。